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Estimation of Tool-Tissue Forces in
Robot-Assisted Minimally Invasive
Surgery Using Neural Networks

Sajeeva Abeywardena *, Qiaodi Yuan, Antonia Tzemanaki, E Psomopoulou,
Leonidas Droukas, Chris Melhuish and Sanja Dogramadzi

Bristol Robotics Laboratory, University of the West of Enghd, Bristol, United Kingdom

A new algorithm is proposed to estimate the tool-tissue fore interaction in robot-assisted
minimally invasive surgery which does not require the use ekternal force sensing. The
proposed method utilizes the current of the motors of the sugical instrument and neural
network methods to estimate the force interaction. Of ine &ad online testing is conducted
to assess the feasibility of the developed algorithm. Restsl showed that the developed
method has promise in allowing online estimation of tooldgsue force and could thus
enable haptic feedback in robotic surgery to be provided.
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1. INTRODUCTION

Robot-assisted minimally invasive surgery (RAMIS) has ghipepularity in the last two
decades through use of the da Vinci master-slave surgic&mys ering improved vision,
precision and patient recovery time compared to traditional MliSanfranco et al., 2004
However, certain shortcomings prevent RAMIS from ful llintsimaximum potential, including
the lack of haptic feedback provided to the surge@vk@mura, 200R Attempts have been
made to develop sensorised surgical instruments as a meashstéct interaction forces during
RAMIS and provide surgeons with haptic feedback. However, the sf force sensors and
incision ports, the sterilization of tools at high temperauand the disposable nature of
surgical tools have so far prevented integration of end-eeltissue force sensing in RAMIS
(Puangmali et al., 2008; Spiers et al., 3015

Force estimation algorithms that do not require sensingdweare at the operating site include
visual estimation of shaft deformatioriLifidsey et al., 2009 modeling of surgical tool-tissue
interaction Okamura et al., 20Q4and the use of motor currentZhao and Nelson, 2015; Sang
etal., 201y Sang et al. (201 fodeled the dynamics of a da Vinci robot and, in conjunctiorttwi
measured motor current, estimated the external force apgigtie tip of the surgical tool; while
Zhao and Nelson (2015reated a 3 degrees-of-freedom (DOF) surgical grasper pymotvith
joint dynamics modeled as individual linear 2nd order systeim estimate external forces (up to
2 N). These methods require some form of modeling and simpli eat{e.g., neglecting friction)
which can a ect the estimation accuracy. Further, the compjexd these algorithms may not allow
for suitable update rates required for haptic feedback, thesting the systems overall stability
and transparency.

Neural networks have been widely utilized both in adaptiventcal and for model
approximations Huang et al., 2000, 20Q)2hus constituting a worthy area of exploration for force
estimation in RAMIS Li and Hannaford (2017used a supervised learning technique, Gaussian
Process Regression (GPR), to estimate tool-tissue intenat¢towever, the GPR technique cannot
predict well when the target is out of range of the training alaFurther, neural network
techniques can be combined with other estimation techngjueor instanceyu et al. (2018)
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proposed a cable tension based method to estimate external Grasping of tissue is an extremely common manoeuvre during
forces and utilized a back propagation (BP) network to estanatRAMIS and is thus the focus of this work. As such, only
resistance parameters such as friction to aid in the forcgaw and grasp of the instrument tip were actuated in this
estimation.Aviles et al. (2015and Aviles et al. (2017¢gombined  investigation. Two Maxon brushed DC motors (3.89 mNm, 62:1
vision based methods with recurrent neural networks toreate  reduction) were attached to the da Vinci forceps via a custom-
tool-tissue interaction. built housing. The motors interfaced with EPOS-2 modules
In this work, we propose a neural network method to estimatgMaxonmotor, 2019and were controlled in position mode. Two
the tool-tissue force interaction during a grasp manoeunre capacitive force sensorSi(igleTact, 201%5N, unidirectional)
RAMIS for future application in providing haptic feedback were attached to the jaws of the forceps and interfaced with
to surgeons. Its novelty resides in the fact that it consderan Arduino UNO (Arduino, 2019 to measure applied forces.
a black box approach regarding the whole mechanism, thushe force measurement setup is detailedTiremanaki et al.
rendering the analysis of the grippers mechanism unnecessary018) Tissue and tumors were simulated by three-dimensional
The proposed method is based on utilization of the current ofrinted hemispheres (Stratasys 3D printer, TangoPlus md}eria
the gripper-actuating motors as well as a detailed examinatfo and a foam tissue analog.i(nbsandthings, 201%imensions:
the various stages of a grasping motion. In contrast to exgsti 1m  0.42m  15mm), shown inFigure 2 all with di erent
algorithms in literature, it does not require external serss hardnessTable 1 contains information regarding the various
or equipment such as vision systems, predicting su cientlyobjects hardness that was measured with a Bareiss durometer

both small and large forces. This paper is organized as followghore A units Bareiss, 2099

section 2 discusses the experimental setup, validates thefuse The force sensors were calibrated by applying known
neural network for force estimation and classi es the ssage Masses directly on the sensors, as depictedrigure 3 The

a grasp; section 3 presents the proposed algorithm; sectionc@rresponding analog output was read by the Arduino, logged
provides results of the algorithm in o ine and online situaths and used as training data for the neural network. Each

and section 5 summarizes the major ndings and propose$orce sensor was calibrated individually, utilizing themsa
future work. methodology for both sensors. Furthermore, experiments for

each sensor were repeated three times to increase the agodirac

the calibration. A Multilayer Perceptron (MLP) neural network
2. METHODOLOGY was utilized, which included one hidden layer with four nede
and a log-sigmoid transfer function. The input data to the
network was the analog sensor reading and the output was
the mapped force measured in Newtond)( The networks
properties were the same for both force sensors. The results of
the calibration are shown irFigure 4. Since each sensor was

2.1. Experimental Setup

The experimental setup, shown Irigure 1, utilized da Vinci
forceps with four-degrees-of-freedom (dof) at the distaldf the
instrument (pitch, roll, yaw, grasp).

usb cable Arduino
UNO
aing SlnfgIeTact ' SlnfgIeTact e Power
left jaw orce Tissue orce right jaw supply
nstrumdht sensor sensor
usb cable
PC 4——1
EPOS2 EPOS2
module module +«——
Left Right
motor motor
usb cable
B
FIGURE 1 | Experimental setup.(A) Da Vinci forceps were powered by two Maxon motors which intdaced with EPOS-2 modules. Applied forces were measured by
two force sensors attached at the forceps jaws and interface with an Arduino. (B) Block diagram depicting the components and connections of he
experimental setup.
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FIGURE 2 | Samples used in the experiments to simulate tissue and tumarof
various hardness.(A) 3D printed hemispherical objects were made from
TangoPlus material (B) Skin was simulated with a foam analog.

TABLE 1 | Hardness of 3D printed objects and arti cial skin.

Object # Hardness (Shore A)

99
65

52 FIGURE 3 | The force sensors were calibrated by applying known masses

41 directly upon them, with a neural network mapping analog sesor reading to
27 force (Newtons).

Arti cial skin 4

A W N P O

Measured with a Bareiss durometer in Shore A units.

Consider the current gure in combination with force, positio

) o o ) and velocity. Nine sections can be speci ed:
calibrated individually, the calibration data may di er veten _ N ) _
the sensors but the overall curves are similgiggre 4, red @) First, the position, velocity and current of the motorsiiease;

dotted lines). b) Once the velocity becomes constant, current follows a
similar trend and the motors continue moving in the
2.2. Validation for Using a Neural Network speci ed trajectory;

For a neural network methodology to be feasible, a relatignsh ¢) When the jaw starts touching the object, the force int&cac
between the inputs and outputs of the network is required. begins to increase and the current prole follows a
As such, experiments were conducted using a hard and soft similar trend;

hemisphere. By controlling the motors position pro le, the jgw d) As the resistance between the jaw and object becomesgreat
of the instrument were commanded to grasp the hemispheres the slope of the force interaction and subsequently the airre
at the same jaw angle—uwith the force interaction between the pro le become steeper, as more currentis required to drive the

jaws and hemispheres measured. Fiféigure 5andTable 2, it is motors to the target position;
evident that interaction with the harder hemisphere resdiitea €) With the motor approaching the target position, the velocity
larger force. Further, it is evident that as motor currentieases, begins to reduce, and the force interaction and motor cutren

the contact force increases. As such, it can be concluded tha reach maximum level;
current and motor position can be used to estimate contaatdor f) The motor has reached the target position and the velocity

and potentially classify tissue type. further decreases until it returns to 0. Correspondinglye th

. . . motor current also decreases and reaches a stable value at th
2.3. Classi cation of Stages in a Grasp same time that velocity becomes 0:
Manoeuvre g) The motor position is constant and a steady grasp is being
The stages of a grasp and the characteristics in the forcitigms applied on the object. Consequently, the force interactioth an
velocity and current pro les are critical in determining aitable current remain fairly consistent;

neural network algorithm for force estimation. Considégure 6  h) As the jaws are commanded to release the object; velocity,
which is an entire grasp of an object. Focussing on the forag pl ~ current and force all begin to decrease; and

ve stages of a grasp manoeuvre can be identi ed. The rsgeta i) The jaws and object are no longer in contact. The force,
is when the instrument is not touching the object. During the  Velocity and current remain steady as the motor returns $o it
second stage, the jaws begin to contact the object whictitsesu home position, with velocity returning to 0 when this position

in the increase of interaction force. In the next stage, dssnsd is reached.

squeeze is applied on the object and the contact force remains

fairly consistent. In the fourth stage, the jaws start teeasle 2.4. Training Data

the object and the force interaction decreases. The nafesta The quality of training data is critical for the neural netvkato
indicates that the jaws and the object are no longer in cdntacbe able to provide an accurate estimation. To develop a robust

Frontiers in Robotics and Al | www.frontiersin.org 3 July 2019 | Volume 6 | Article 56


https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Abeywardena et al. Tool-Tissue Force Estimation

45 T T T T T T 45 T T T T T T T 5

.
- .
¢  measured force ..': *  measured force = !
40 - *  predict force . % 40 *  predict force . ot 1
. .
.
.

o K
35 i 35 i
oo ¢
30 .o 30
oo
Z 251 . ::: 8 Z 251
@ ]
5 2 i g
w20 .o b w20
b R H
% o ¢
15 e 15+ :.; il
0% HS
10 < i - 10 4 .
N . @
5h e . 50 2 :
» . o8
L ?. -
N IPTY A , ; . obees® . . N A ‘ :
100 120 140 160 180 200 220 24 100 120 140 160 180 200 220 240 260
Analog reading Analog reading
Left sensor Right sensor

FIGURE 4 | Results of the force sensor calibration (red dotted lines dicating the calibration curve). The sensors show similargsformance with small differences due
to individual calibration of each sensor.

estimator, training data was obtained for objects with vagy sent to di erent models. If the classi er says the jaws are not
sti ness, i.e., soft sponge like to extremely rigid. Furtltleg, data in contact with the object, the last interval data samples are
set consisted of grasps that applied a sustained force on actobje sent to the no-grasp model. If the jaws are in contact with the
(i.e., for around 20 s) and grasps that would squeeze an object object, then the data is sent to the next stage.

then immediately release. The angle of the jaws was alsedvari3. In stage 3, the instrument and the object are in contace Th

such that the forces applied on the object had greater range. current motor position in this state is compared with that
in last state to identify the di erent states of the instrunten
3. FORCE ESTIMATION MODELS (closing, constant or opening). If the current motor positian i

larger than the former, the closing model is applied to predict
Due to the stages and signal characteristics of a grasp msree the contact force. If the motor position is constant, the output
the force estimation algorithm is separated into multiple rets force is assumed to be constant. Otherwise, the opening model
the classi er, closing model, opening model and no-grasp edod is used. This model is trained by information collected in

the closing section of the instrument, including sensor eslu
3.1. System Overview and predicted force. However, the opening model is trained
Figure 7represents the structure of the force estimation system. only once the instrument is recognized to open. Other data
The control system box represents the data acquisition, i.e. collected when the jaws are releasing will be sent to trained
sensor signals used for the algorithm; data length is the lmem opening model.
of samples collected in the current state and timestep is tsed

determine if there is enough data to be sent to the classi edsi. The classier states that the jaws are either in contact with

When the classi er returns a value of 1, the jaws are touctiiireg an object or not. When the jaws are n contact, three stages
are apparent based on motor position. In these stages, the

object. The no-grasp model is used to map sensor informaton relationship between the inputs and the outputs are di erent
contact force when the jaws are not in contact with the ohject P P P

with interval setting a lower limit of data sent to this model. izu?ésgéssfg dirlrti\gotl: Sl}én'g ?r?(fctjlglnbi;o:fstgli |St2?1etshgfcir?$fp
The angle of the motors are used to recognize the state of the P y y

instrument and which model should be used for force estiorati P2 Ie_, the force pro le would not be symmetric b_ecause of
The stages of the algorithm are: the signi cant drop of current. However, the truth is that e¢h

measured force pro le is symmetric. Velocity can be regarded
1. When there is not enough data to be sent to the classi &, thas another potential input to build only one model for grasping
force is assumed to be 0. If data length is bigger than intervadut the velocity decreases before the instrument gets ttatlyet
but smaller than timestep, the processed input data is sent tposition and can not help alleviate this issue. Based on the
the no-grasp model. evidence, itis not ideal to build just one model to encapsubaie
2. In stage 2, if data length is bigger than timestep, theigtass grasp. Therefore, separation is necessary. Regarding tlaénsabt
can be used. The classi er indicates if the jaws touch thapplied force section during grasping, iEigure 6 (section f in
object. According to the result of classi er, the data will beCurrent plot), although there is a drop of current and velggit
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FIGURE 5 | Comparison of the motor current and measured force when the
jaws of the instrument are grasping hard and soft objects attte same
commanded jaw angle. Harder objects resulted in larger appd jaw force and
consequently higher motor current.

TABLE 2 | Maximum current for each grasp of hard and soft object, respetively.

Grasp # Hard object Soft object
1 145 mA 129 mA
2 144 mA 110 mA
3 141 mA 115 mA
4 143 mA 121 mA
5 145 mA 120 mA
such, the relative motor position is de ned, i.e.,
rDidi 4§ )

where | represents the current relative motor positiog;is the
current motor position and sis the motor position the rsttime
the classi er recognizes the contact of the jaws and object.
According to Figure 6, it is clear that when the jaws are
closing, the slope of the current pro le is larger than a neanze
value. This corresponds to the contact of jaws and objectewWh
the current returns to a stable pro le, the whole grasp move ha
nished. In order to detect the tendency, past informatiorosid
be used. As such, the classi er relies on time-series ddth, w
a long-short term memory (LSTM) network used. The LSTM
network had 2 hidden layers each with 20 hidden units and used
40 samples. The LSTM layer was followed by a dropout layer to
avoid any over tting problems and a fully connected layer. A
classi cation layer and softmax layer were used to conduet th
classi cation tasks. The inputs to the LSTM network were mmoto
current, position and velocity with the output being a ag that
identi es the grasping status. Training data covered a raofye
tissue types to make a robust classi er network. The trainingda
had the critical points of the grasp force manually set. Aacyr
of the classi er was found to be 90%.

3.3. Closing Model

This model is used to describe when the jaws of the instrument
are getting in contact with the object and in the process of
squeezing. A recurrent neural network (RNNs) is dependent
on previous information and is therefore unable to predict a
sudden increase or drop in force from past information. As
such, a feedforward neural network—the Levenberg-Marduar
backpropagation (LMb) method—was chosen to train the closing
model. The network had 4 hidden layers each with 20 nodes and

motor position and force during this period do not change ysed a log-sigmoid transfer function. The inputs to this mbde
too much. Therefore, it is convincing that the determinantyere absolute value of current, velocity and the relativetjpsi
feature of this part is motor position. Hence, when in this stat of the left and right jaws, whilst the output was the contact éorc
the prediction system assumes the force is the same as tiffie performance of the network is illustrated Figure 8, with

previous sample.

3.2. Classi er

the mean square error of the left and right jaws being 0.2D44
N and 0.28 0.46N, respectively.

The classi er model is used to determine when the jaws and.4. Opening Model

object are in contact. This model was built to exclude theThe opening model is trained using information from the closing
in uence of tissue size, i.e., for two objects with the samenodel, as the distinguishing factor for force prediction i®th
properties but di erent size, to generate the same amount afdor relative jaw position. As such, this network is trained in antioe

the smaller object will require a larger motor displacemerg. Amanner and training time is critical. As such, a simple netkwor
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FIGURE 6 | Stages of an entire object grasp and the characteristics oftte force, position, velocity, and current pro les. Five stags can be identi ed based on the
force pro le: no grasp, beginning of contact, sustained squ&ze/grasping, release of object, jaws and object no longer igontact.

is required. The relationship between input and output is sienpl and the no-grasp model for the left jaw of ON2 This region
in this case, so a complicated network could cause an overgtt corresponds to when the jaws and object are not in contact
problem. Thus, a feedforward network with one hidden layest an with one another. This is not that consequential to the actual

5 neurons was used. grasp force applied by the instrument, estimation of whichis t
primary goal of this work. Further, there is small sudden drop
3.5. No-Grasp Model near the peak of the left jaw during the increasing section. At

The no-grasp model is used when the jaws are not in contatt witthis point, the current of the motor suddenly decreased tazer
tissues. A feedforward network with the same network progsrti and caused the drop in predicted force. A similar phenomenon
as the closing model was used. The inputs to the model arig exhibited for the right jaw. Further, consider poirggndb in
corresponding jaw position and motor current, with the output the right jaw plot ofFigure 9, which are the points at which the

being the contact force. classi er identi es that the jaws and object have made arst lo
contact, respectively. The small increase is because thiveela
4. RESULTS positions of the contact/lose contact are di erent, which agc

the relative position for the decreasing section and causes t
The developed algorithm is tested in two manners; rst, in anrise in force. The mean error for the left and right jaw for ghi
o ine manner to test if the prediction system is feasible, ameéh  situation was 0.12 0.11N and 0.13 0.12N, respectively.

to see if the algorithm can estimate forces accurately inrdime Figure 10is the performance of the system using a foam tissue
manner, such that it could have potential to be used in a forc@nalog. The force pro le of the left jaw follows the trend of
feedback system in RAMIS. the measured force pro le. However, at the end of the opening
model section, a sudden decrease appears. This is the ertw of t
4.1. Of ine Force Estimation corresponding classi er. In this case, it recognized the ream

In the o -line force estimation, the algorithm is run in a sati  when jaws and objects lost contact before it actually o@lrr
manner. The algorithm was tested for grasping manoeuvres th#ccording toFigure 10 in the opening model section, it seems
applied a sustained squeeze and a continuous squeeze argereleéhat prediction force in right jaw decreases slower than the
motion. Figure 9 shows the result of the algorithm for a hard measured force (B). This is because the opening model depends
object with a sustained squeeze applied. on the closing model where the estimation rises slower than
The predicted force follows the trend of the measured forcemeasured force (A). The mean error for the left and right jaw f
however, there is a discrepancy between the predicted modglis situation was 0.12 0.16N and 0.19 0.18N, respectively.
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same as
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FIGURE 7 | Structure of the estimation algorithm. The classi er detect if there is contact between the instrument jaws and objectThe no-grasp model is applied
when there is no contact between the jaws and object. The closg model is applied when the jaws are closing and grasping #object, and the opening model is

applied when the jaws are opening and releasing the object.

osition decrease?

Figure 11is the result of a squeeze and release grasp appliedtimation of the contact force. The two routines were run in
on a soft object. It is evident that there is a spike and lag & thparallel and communicated via TCP/IP. The client was used for
opening model section for the right jaw. This is due to a largehe control and data acquisition of the hardware and the serv
relative position for the right jaw, with the model still beling  was dedicated to force estimation.
it is in the closing model. As such, there is a spike and delay The result of an online test with the articial skin is
introduced in the decreasing grasp force estimation. Theame shown in Figure 12 It is evident that the force estimation
error for the left and right jaw for this situation was 0.170.2N  for the decreasing section of the right jaw uctuates. This
and 0.39 0.28N, respectively. can be attributed to the data available for training the

In conclusion, the force estimation algorithm shows promiseopening model being limited. As such, the network over ts the
in tting o -line data regardless of tissue properties; howegve available data.
there is scope for improvement. In conclusion, the developed algorithm can predict the
grasping force in an online manner. However, it is not
4.2. Online Force Estimation robust and the execution time of the algorithm requires
The online system consists of two parallel routines; onetedla improvement such that su cient data is available for the mdsle
to hardware (control, data acquisition) and the other forlioe  to predict accurately.
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FIGURE 9 | Of ine test of a sustained squeeze of a hard object (estimatedorce from algorithm in red; measured force in blue).
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FIGURE 11 | Of ine test of a grasp and release of a soft object (estimateddrce from algorithm in red; measured force in blue).

FIGURE 12 | Online test of a grasp and release of a soft object-foam tissianalog (estimated force from algorithm in red; measured foe in blue).

5. CONCLUSION treats the whole mechanism as a black box so it is unnecessary
analyse the mechanism of the grippers. In addition, this method
This paper proposed a new algorithm using neural networks t@joes not need to consider tissue properties compared to vision-
estimate the grasping force of a surgical instrument for pp&n pased methods. Nevertheless, there exists scope to improve on
use in restoring haptic feedback in RAMIS. The results showeghe developed algorithm in the future. Namely, the execution
that the algorithm can estimate the tool-tissue interactforce  time of the code should be improved for online estimation,
during the grasp and has potential to be used in an onlinaincertainty should be added into the models and potentially
manner. This method can predict both large and relatively maknowledge about the properties of the mechanism at hand
forces which was an issue in the algorithm developed’bsto  (i.e., friction, tension). Moreover, since this work aimexdie a
and Nelson (2015)Moreover, the problem that GPR cannot preliminary investigation to assess the feasibility of usiragjon
predict the force out of training data's range can be solvedgis current to estimate tool-tissue force interaction, a xedsg®mn
this algorithm. The main advantage of this algorithm is thiat for the tool's wrist was assumed. Future experimentation
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will take into consideration

jaw con gurations.

grasping with dierent
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