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Estimation of Tool-Tissue Forces in
Robot-Assisted Minimally Invasive
Surgery Using Neural Networks
Sajeeva Abeywardena *, Qiaodi Yuan, Antonia Tzemanaki, E� Psomopoulou,
Leonidas Droukas, Chris Melhuish and Sanja Dogramadzi

Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom

A new algorithm is proposed to estimate the tool-tissue force interaction in robot-assisted
minimally invasive surgery which does not require the use ofexternal force sensing. The
proposed method utilizes the current of the motors of the surgical instrument and neural
network methods to estimate the force interaction. Of�ine and online testing is conducted
to assess the feasibility of the developed algorithm. Results showed that the developed
method has promise in allowing online estimation of tool-tissue force and could thus
enable haptic feedback in robotic surgery to be provided.
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1. INTRODUCTION

Robot-assisted minimally invasive surgery (RAMIS) has gained popularity in the last two
decades through use of the da Vinci master-slave surgical system o�ering improved vision,
precision and patient recovery time compared to traditional MIS(Lanfranco et al., 2004).
However, certain shortcomings prevent RAMIS from ful�lling its maximum potential, including
the lack of haptic feedback provided to the surgeon (Okamura, 2009). Attempts have been
made to develop sensorised surgical instruments as a means to detect interaction forces during
RAMIS and provide surgeons with haptic feedback. However, the size of force sensors and
incision ports, the sterilization of tools at high temperature and the disposable nature of
surgical tools have so far prevented integration of end-e�ector/tissue force sensing in RAMIS
(Puangmali et al., 2008; Spiers et al., 2015).

Force estimation algorithms that do not require sensing hardware at the operating site include
visual estimation of shaft deformation (Lindsey et al., 2009), modeling of surgical tool-tissue
interaction (Okamura et al., 2004) and the use of motor current (Zhao and Nelson, 2015; Sang
et al., 2017). Sang et al. (2017)modeled the dynamics of a da Vinci robot and, in conjunction with
measured motor current, estimated the external force appliedat the tip of the surgical tool; while
Zhao and Nelson (2015)created a 3 degrees-of-freedom (DOF) surgical grasper prototype with
joint dynamics modeled as individual linear 2nd order systems to estimate external forces (up to
2 N). These methods require some form of modeling and simpli�cation (e.g., neglecting friction)
which can a�ect the estimation accuracy. Further, the complexity of these algorithms may not allow
for suitable update rates required for haptic feedback, thus a�ecting the systems overall stability
and transparency.

Neural networks have been widely utilized both in adaptive control and for model
approximations (Huang et al., 2000, 2002), thus constituting a worthy area of exploration for force
estimation in RAMIS.Li and Hannaford (2017)used a supervised learning technique, Gaussian
Process Regression (GPR), to estimate tool-tissue interaction. However, the GPR technique cannot
predict well when the target is out of range of the training data. Further, neural network
techniques can be combined with other estimation techniques. For instance,Yu et al. (2018)
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proposed a cable tension based method to estimate external
forces and utilized a back propagation (BP) network to estimate
resistance parameters such as friction to aid in the force
estimation.Aviles et al. (2015)andAviles et al. (2017)combined
vision based methods with recurrent neural networks to estimate
tool-tissue interaction.

In this work, we propose a neural network method to estimate
the tool-tissue force interaction during a grasp manoeuvrein
RAMIS for future application in providing haptic feedback
to surgeons. Its novelty resides in the fact that it considers
a black box approach regarding the whole mechanism, thus
rendering the analysis of the grippers mechanism unnecessary.
The proposed method is based on utilization of the current of
the gripper-actuating motors as well as a detailed examination of
the various stages of a grasping motion. In contrast to existing
algorithms in literature, it does not require external sensors
or equipment such as vision systems, predicting su�ciently
both small and large forces. This paper is organized as follows;
section 2 discusses the experimental setup, validates the useof
neural network for force estimation and classi�es the stages of
a grasp; section 3 presents the proposed algorithm; section 4
provides results of the algorithm in o�ine and online situations
and section 5 summarizes the major �ndings and proposes
future work.

2. METHODOLOGY

2.1. Experimental Setup
The experimental setup, shown inFigure 1, utilized da Vinci
forceps with four-degrees-of-freedom (dof) at the distal tip of the
instrument (pitch, roll, yaw, grasp).

FIGURE 1 | Experimental setup.(A) Da Vinci forceps were powered by two Maxon motors which interfaced with EPOS-2 modules. Applied forces were measured by
two force sensors attached at the forceps jaws and interfaced with an Arduino. (B) Block diagram depicting the components and connections of the
experimental setup.

Grasping of tissue is an extremely common manoeuvre during
RAMIS and is thus the focus of this work. As such, only
yaw and grasp of the instrument tip were actuated in this
investigation. Two Maxon brushed DC motors (3.89 mNm, 62:1
reduction) were attached to the da Vinci forceps via a custom-
built housing. The motors interfaced with EPOS-2 modules
(Maxonmotor, 2019) and were controlled in position mode. Two
capacitive force sensors (SingleTact, 2019, 45N, unidirectional)
were attached to the jaws of the forceps and interfaced with
an Arduino UNO (Arduino, 2019) to measure applied forces.
The force measurement setup is detailed inTzemanaki et al.
(2018). Tissue and tumors were simulated by three-dimensional
printed hemispheres (Stratasys 3D printer, TangoPlus material)
and a foam tissue analog (Limbsandthings, 2019, dimensions:
1m � 0.42m � 15mm), shown in Figure 2, all with di�erent
hardness.Table 1 contains information regarding the various
objects hardness that was measured with a Bareiss durometerin
Shore A units (Bareiss, 2019).

The force sensors were calibrated by applying known
masses directly on the sensors, as depicted inFigure 3. The
corresponding analog output was read by the Arduino, logged
and used as training data for the neural network. Each
force sensor was calibrated individually, utilizing the same
methodology for both sensors. Furthermore, experiments for
each sensor were repeated three times to increase the accuracy of
the calibration. A Multilayer Perceptron (MLP) neural network
was utilized, which included one hidden layer with four nodes
and a log-sigmoid transfer function. The input data to the
network was the analog sensor reading and the output was
the mapped force measured in Newtons (N). The networks
properties were the same for both force sensors. The results of
the calibration are shown inFigure 4. Since each sensor was
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FIGURE 2 | Samples used in the experiments to simulate tissue and tumors of
various hardness.(A) 3D printed hemispherical objects were made from
TangoPlus material.(B) Skin was simulated with a foam analog.

TABLE 1 | Hardness of 3D printed objects and arti�cial skin.

Object # Hardness (Shore A)

0 99

1 65

2 52

3 41

4 27

Arti�cial skin 4

Measured with a Bareiss durometer in Shore A units.

calibrated individually, the calibration data may di�er between
the sensors but the overall curves are similar (Figure 4, red
dotted lines).

2.2. Validation for Using a Neural Network
For a neural network methodology to be feasible, a relationship
between the inputs and outputs of the network is required.
As such, experiments were conducted using a hard and soft
hemisphere. By controlling the motors position pro�le, the jaws
of the instrument were commanded to grasp the hemispheres
at the same jaw angle—with the force interaction between the
jaws and hemispheres measured. FromFigure 5andTable 2, it is
evident that interaction with the harder hemisphere resulted in a
larger force. Further, it is evident that as motor current increases,
the contact force increases. As such, it can be concluded that
current and motor position can be used to estimate contact force
and potentially classify tissue type.

2.3. Classi�cation of Stages in a Grasp
Manoeuvre
The stages of a grasp and the characteristics in the force, position,
velocity and current pro�les are critical in determining a suitable
neural network algorithm for force estimation. ConsiderFigure 6
which is an entire grasp of an object. Focussing on the force plot,
�ve stages of a grasp manoeuvre can be identi�ed. The �rst stage
is when the instrument is not touching the object. During the
second stage, the jaws begin to contact the object which results
in the increase of interaction force. In the next stage, a sustained
squeeze is applied on the object and the contact force remains
fairly consistent. In the fourth stage, the jaws start to release
the object and the force interaction decreases. The �nal stage
indicates that the jaws and the object are no longer in contact.

FIGURE 3 | The force sensors were calibrated by applying known masses
directly upon them, with a neural network mapping analog sensor reading to
force (Newtons).

Consider the current �gure in combination with force, position
and velocity. Nine sections can be speci�ed:

a) First, the position, velocity and current of the motors increase;
b) Once the velocity becomes constant, current follows a

similar trend and the motors continue moving in the
speci�ed trajectory;

c) When the jaw starts touching the object, the force interaction
begins to increase and the current pro�le follows a
similar trend;

d) As the resistance between the jaw and object becomes greater,
the slope of the force interaction and subsequently the current
pro�le become steeper, as more current is required to drive the
motors to the target position;

e) With the motor approaching the target position, the velocity
begins to reduce, and the force interaction and motor current
reach maximum level;

f) The motor has reached the target position and the velocity
further decreases until it returns to 0. Correspondingly, the
motor current also decreases and reaches a stable value at the
same time that velocity becomes 0;

g) The motor position is constant and a steady grasp is being
applied on the object. Consequently, the force interaction and
current remain fairly consistent;

h) As the jaws are commanded to release the object; velocity,
current and force all begin to decrease; and

i) The jaws and object are no longer in contact. The force,
velocity and current remain steady as the motor returns to its
home position, with velocity returning to 0 when this position
is reached.

2.4. Training Data
The quality of training data is critical for the neural network to
be able to provide an accurate estimation. To develop a robust
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FIGURE 4 | Results of the force sensor calibration (red dotted lines indicating the calibration curve). The sensors show similar performance with small differences due
to individual calibration of each sensor.

estimator, training data was obtained for objects with varying
sti�ness, i.e., soft sponge like to extremely rigid. Further,the data
set consisted of grasps that applied a sustained force on an object
(i.e., for around 20 s) and grasps that would squeeze an object
then immediately release. The angle of the jaws was also varied
such that the forces applied on the object had greater range.

3. FORCE ESTIMATION MODELS

Due to the stages and signal characteristics of a grasp manoeuvre,
the force estimation algorithm is separated into multiple models:
the classi�er, closing model, opening model and no-grasp model.

3.1. System Overview
Figure 7represents the structure of the force estimation system.
The control system box represents the data acquisition, i.e.,
sensor signals used for the algorithm; data length is the number
of samples collected in the current state and timestep is usedto
determine if there is enough data to be sent to the classi�er model.
When the classi�er returns a value of 1, the jaws are touchingthe
object. The no-grasp model is used to map sensor informationto
contact force when the jaws are not in contact with the object,
with interval setting a lower limit of data sent to this model.
The angle of the motors are used to recognize the state of the
instrument and which model should be used for force estimation.

The stages of the algorithm are:

1. When there is not enough data to be sent to the classi�er, the
force is assumed to be 0. If data length is bigger than interval
but smaller than timestep, the processed input data is sent to
the no-grasp model.

2. In stage 2, if data length is bigger than timestep, the classi�er
can be used. The classi�er indicates if the jaws touch the
object. According to the result of classi�er, the data will be

sent to di�erent models. If the classi�er says the jaws are not
in contact with the object, the last interval data samples are
sent to the no-grasp model. If the jaws are in contact with the
object, then the data is sent to the next stage.

3. In stage 3, the instrument and the object are in contact. The
current motor position in this state is compared with that
in last state to identify the di�erent states of the instrument
(closing, constant or opening). If the current motor position is
larger than the former, the closing model is applied to predict
the contact force. If the motor position is constant, the output
force is assumed to be constant. Otherwise, the opening model
is used. This model is trained by information collected in
the closing section of the instrument, including sensor values
and predicted force. However, the opening model is trained
only once the instrument is recognized to open. Other data
collected when the jaws are releasing will be sent to trained
opening model.

The classi�er states that the jaws are either in contact with
an object or not. When the jaws are in contact, three stages
are apparent based on motor position. In these stages, the
relationship between the inputs and the outputs are di�erent
as discussed previously in section 2.3. If the stages of a grasp
could be predicted by one model based solely on the current
pro�le, the force pro�le would not be symmetric because of
the signi�cant drop of current. However, the truth is that the
measured force pro�le is symmetric. Velocity can be regarded
as another potential input to build only one model for grasping
but the velocity decreases before the instrument gets to thetarget
position and can not help alleviate this issue. Based on the
evidence, it is not ideal to build just one model to encapsulateone
grasp. Therefore, separation is necessary. Regarding the sustained
applied force section during grasping, i.e.,Figure 6 (section f in
Current plot), although there is a drop of current and velocity,
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FIGURE 5 | Comparison of the motor current and measured force when the
jaws of the instrument are grasping hard and soft objects at the same
commanded jaw angle. Harder objects resulted in larger applied jaw force and
consequently higher motor current.

motor position and force during this period do not change
too much. Therefore, it is convincing that the determinant
feature of this part is motor position. Hence, when in this state,
the prediction system assumes the force is the same as the
previous sample.

3.2. Classi�er
The classi�er model is used to determine when the jaws and
object are in contact. This model was built to exclude the
in�uence of tissue size, i.e., for two objects with the same
properties but di�erent size, to generate the same amount of force
the smaller object will require a larger motor displacement. As

TABLE 2 | Maximum current for each grasp of hard and soft object, respectively.

Grasp # Hard object Soft object

1 145 mA 129 mA

2 144 mA 110 mA

3 141 mA 115 mA

4 143 mA 121 mA

5 145 mA 120 mA

such, the relative motor position is de�ned, i.e.,

� r D j � cj � j � sj (1)

where� r represents the current relative motor position;� c is the
current motor position and� s is the motor position the �rst time
the classi�er recognizes the contact of the jaws and object.

According to Figure 6, it is clear that when the jaws are
closing, the slope of the current pro�le is larger than a near zero
value. This corresponds to the contact of jaws and objects. When
the current returns to a stable pro�le, the whole grasp move has
�nished. In order to detect the tendency, past information should
be used. As such, the classi�er relies on time-series data, with
a long-short term memory (LSTM) network used. The LSTM
network had 2 hidden layers each with 20 hidden units and used
40 samples. The LSTM layer was followed by a dropout layer to
avoid any over�tting problems and a fully connected layer. A
classi�cation layer and softmax layer were used to conduct the
classi�cation tasks. The inputs to the LSTM network were motor
current, position and velocity with the output being a �ag that
identi�es the grasping status. Training data covered a rangeof
tissue types to make a robust classi�er network. The training data
had the critical points of the grasp force manually set. Accuracy
of the classi�er was found to be 90%.

3.3. Closing Model
This model is used to describe when the jaws of the instrument
are getting in contact with the object and in the process of
squeezing. A recurrent neural network (RNNs) is dependent
on previous information and is therefore unable to predict a
sudden increase or drop in force from past information. As
such, a feedforward neural network—the Levenberg-Marquardt
backpropagation (LMb) method—was chosen to train the closing
model. The network had 4 hidden layers each with 20 nodes and
used a log-sigmoid transfer function. The inputs to this model
were absolute value of current, velocity and the relative position
of the left and right jaws, whilst the output was the contact force.
The performance of the network is illustrated inFigure 8, with
the mean square error of the left and right jaws being 0.20� 0.44
N and 0.28� 0.46N, respectively.

3.4. Opening Model
The opening model is trained using information from the closing
model, as the distinguishing factor for force prediction is the
relative jaw position. As such, this network is trained in an online
manner and training time is critical. As such, a simple network
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FIGURE 6 | Stages of an entire object grasp and the characteristics of the force, position, velocity, and current pro�les. Five stages can be identi�ed based on the
force pro�le: no grasp, beginning of contact, sustained squeeze/grasping, release of object, jaws and object no longer incontact.

is required. The relationship between input and output is simple
in this case, so a complicated network could cause an over-�tting
problem. Thus, a feedforward network with one hidden layer and
5 neurons was used.

3.5. No-Grasp Model
The no-grasp model is used when the jaws are not in contact with
tissues. A feedforward network with the same network properties
as the closing model was used. The inputs to the model are
corresponding jaw position and motor current, with the output
being the contact force.

4. RESULTS

The developed algorithm is tested in two manners; �rst, in an
o�ine manner to test if the prediction system is feasible, and then
to see if the algorithm can estimate forces accurately in an online
manner, such that it could have potential to be used in a force
feedback system in RAMIS.

4.1. Of�ine Force Estimation
In the o�-line force estimation, the algorithm is run in a serial
manner. The algorithm was tested for grasping manoeuvres that
applied a sustained squeeze and a continuous squeeze and release
motion. Figure 9 shows the result of the algorithm for a hard
object with a sustained squeeze applied.

The predicted force follows the trend of the measured force;
however, there is a discrepancy between the predicted model

and the no-grasp model for the left jaw of 0.2N. This region
corresponds to when the jaws and object are not in contact
with one another. This is not that consequential to the actual
grasp force applied by the instrument, estimation of which is the
primary goal of this work. Further, there is small sudden drop
near the peak of the left jaw during the increasing section. At
this point, the current of the motor suddenly decreased to zero
and caused the drop in predicted force. A similar phenomenon
is exhibited for the right jaw. Further, consider pointsa andb in
the right jaw plot ofFigure 9, which are the points at which the
classi�er identi�es that the jaws and object have made and lost
contact, respectively. The small increase is because the relative
positions of the contact/lose contact are di�erent, which a�ects
the relative position for the decreasing section and causes the
rise in force. The mean error for the left and right jaw for this
situation was 0.12� 0.11N and 0.13� 0.12N, respectively.

Figure 10is the performance of the system using a foam tissue
analog. The force pro�le of the left jaw follows the trend of
the measured force pro�le. However, at the end of the opening
model section, a sudden decrease appears. This is the error of the
corresponding classi�er. In this case, it recognized the moment
when jaws and objects lost contact before it actually occurred.
According toFigure 10, in the opening model section, it seems
that prediction force in right jaw decreases slower than the
measured force (B). This is because the opening model depends
on the closing model where the estimation rises slower than
measured force (A). The mean error for the left and right jaw for
this situation was 0.12� 0.16N and 0.19� 0.18N, respectively.
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FIGURE 7 | Structure of the estimation algorithm. The classi�er detects if there is contact between the instrument jaws and object.The no-grasp model is applied
when there is no contact between the jaws and object. The closing model is applied when the jaws are closing and grasping the object, and the opening model is
applied when the jaws are opening and releasing the object.

Figure 11is the result of a squeeze and release grasp applied
on a soft object. It is evident that there is a spike and lag in the
opening model section for the right jaw. This is due to a large
relative position for the right jaw, with the model still believing
it is in the closing model. As such, there is a spike and delay
introduced in the decreasing grasp force estimation. The mean
error for the left and right jaw for this situation was 0.17� 0.2N
and 0.39� 0.28N, respectively.

In conclusion, the force estimation algorithm shows promise
in �tting o�-line data regardless of tissue properties; however,
there is scope for improvement.

4.2. Online Force Estimation
The online system consists of two parallel routines; one related
to hardware (control, data acquisition) and the other for online

estimation of the contact force. The two routines were run in
parallel and communicated via TCP/IP. The client was used for
the control and data acquisition of the hardware and the server
was dedicated to force estimation.

The result of an online test with the arti�cial skin is
shown in Figure 12. It is evident that the force estimation
for the decreasing section of the right jaw �uctuates. This
can be attributed to the data available for training the
opening model being limited. As such, the network over�ts the
available data.

In conclusion, the developed algorithm can predict the
grasping force in an online manner. However, it is not
robust and the execution time of the algorithm requires
improvement such that su�cient data is available for the models
to predict accurately.
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FIGURE 8 | Performance of the closing model. Inputs of model's neural network are absolute value of current, velocity, and relativejaws position. Model's output is
contact force (red line), compared to the actual measured force (blue line).

FIGURE 9 | Of�ine test of a sustained squeeze of a hard object (estimatedforce from algorithm in red; measured force in blue).

FIGURE 10 | Of�ine test of a sustained squeeze of a soft object-foam tissue analog (estimated force from algorithm in red; measured force in blue).
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FIGURE 11 | Of�ine test of a grasp and release of a soft object (estimated force from algorithm in red; measured force in blue).

FIGURE 12 | Online test of a grasp and release of a soft object-foam tissue analog (estimated force from algorithm in red; measured force in blue).

5. CONCLUSION

This paper proposed a new algorithm using neural networks to
estimate the grasping force of a surgical instrument for potential
use in restoring haptic feedback in RAMIS. The results showed
that the algorithm can estimate the tool-tissue interaction force
during the grasp and has potential to be used in an online
manner. This method can predict both large and relatively small
forces which was an issue in the algorithm developed byZhao
and Nelson (2015). Moreover, the problem that GPR cannot
predict the force out of training data's range can be solved using
this algorithm. The main advantage of this algorithm is thatit

treats the whole mechanism as a black box so it is unnecessaryto
analyse the mechanism of the grippers. In addition, this method
does not need to consider tissue properties compared to vision-
based methods. Nevertheless, there exists scope to improve on
the developed algorithm in the future. Namely, the execution
time of the code should be improved for online estimation,
uncertainty should be added into the models and potentially
knowledge about the properties of the mechanism at hand
(i.e., friction, tension). Moreover, since this work aimed to be a
preliminary investigation to assess the feasibility of using motor
current to estimate tool-tissue force interaction, a �xed position
for the tool's wrist was assumed. Future experimentation
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will take into consideration grasping with di�erent
jaw con�gurations.
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